Ubuntu does not impose hardware requirements beyond the requirements of the Linux kernel and the GNU tool-sets. Therefore, any architecture or platform to which the Linux kernel, libc, gcc, etc. have been ported, and for which an Ubuntu port exists, can run Ubuntu.
Rather than attempting to describe all the different hardware configurations which are supported for 32-bit hard-float ARMv7, this section contains general information and pointers to where additional information can be found.
Ubuntu 20.04 supports six major architectures and several variations of each architecture known as “flavors”. One other architecture (IBM/Motorola PowerPC) has an unofficial port.
Architecture | Ubuntu Designation | Subarchitecture | Flavor |
---|---|---|---|
Intel x86-based | i386 | ||
AMD64 & Intel 64 | amd64 | ||
ARM with hardware FPU | armhf | multiplatform | generic |
multiplatform for LPAE-capable systems | generic-lpae | ||
64bit ARM | arm64 | ||
IBM POWER Systems | ppc64el | IBM POWER8 and newer machines | |
IBM z/Architecture | armhf | IBM Z and IBM LinuxONE, no s390 (31-bit mode) support | zEC12 and newer machines |
ARM systems are much more heterogeneous than those based on the i386/amd64-based PC architecture, so the support situation can be much more complicated.
The ARM architecture is used mainly in so-called “system-on-chip” (SoC) designs. These SoCs are designed by many different companies with vastly varying hardware components even for the very basic functionality required to bring the system up. System firmware interfaces have been increasingly standardised over time, but especially on older hardware firmware/boot interfaces vary a great deal, so on these systems the Linux kernel has to take care of many system-specific low-level issues which would be handled by the mainboard's BIOS in the PC world.
At the beginning of the ARM support in the Linux kernel, the hardware variety resulted in the requirement of having a separate kernel for each ARM system in contrast to the “one-fits-all” kernel for PC systems. As this approach does not scale to a large number of different systems, work was done to allow booting with a single ARM kernel that can run on different ARM systems. Support for newer ARM systems is now implemented in a way that allows the use of such a multiplatform kernel, but for several older systems a separate specific kernel is still required. Because of this, the standard Ubuntu distribution only supports installation on the newer systems which are supported by the ARM multiplatform kernels in Ubuntu/armhf.
The following systems are known to work with Ubuntu/armhf using the multiplatform (armmp) kernel:
The IMX53QSB is a development board based on the i.MX53 SoC.
The Versatile Express is a development board series from ARM consisting of a baseboard which can be equipped with various CPU daughter boards.
The armmp kernel supports several development boards and embedded systems based on the Allwinner A10 (architecture codename “sun4i”), A10s/A13 (architecture codename “sun5i”) and A20 (architecture codename “sun7i”) SoCs. Full installer support is currently available for the following sunXi-based systems:
Cubietech Cubieboard 1 + 2 / Cubietruck
LeMaker Banana Pi and Banana Pro
LinkSprite pcDuino and pcDuino3
Mele A1000
Miniand Hackberry
Olimex A10-Olinuxino-LIME / A10s-Olinuxino Micro / A13-Olinuxino / A13-Olinuxino Micro / A20-Olinuxino-LIME / A20-Olinuxino-LIME2 / A20-Olinuxino Micro
PineRiver Mini X-Plus
System support for Allwinner sunXi-based devices is limited to drivers and device-tree information available in the mainline Linux kernel. The android-derived linux-sunxi.org 3.4 kernel series is not supported by Ubuntu.
The mainline Linux kernel generally supports serial console, ethernet, SATA, USB and MMC/SD-cards on Allwinner A10, A10s/A13 and A20 SoCs, but it does not have native drivers for the display (HDMI/VGA/LCD) and audio hardware in these SoCs. The NAND flash memory that is built into some sunXi-based systems is not supported.
Using a local display is technically possible without native display drivers via the “simplefb” infrastructure in the mainline kernel, which relies on the “U-Boot” bootloader for initialising the display hardware.
The Cubox-i series is a set of small, cubical-shaped systems based on the Freescale i.MX6 SoC family. System support for the Cubox-i series is limited to drivers and device-tree information available in the mainline Linux kernel; the Freescale 3.0 kernel series for the Cubox-i is not supported by Ubuntu. Available drivers in the mainline kernel include serial console, ethernet, USB, MMC/SD-card and display support over HDMI (console and X11). In addition to that, the eSATA port on the Cubox-i4Pro is supported.
The Wandboard Quad is a development board based on the Freescale i.MX6 Quad SoC. System support for it is limited to drivers and device-tree information available in the mainline Linux kernel; the wandboard-specific 3.0 and 3.10 kernel series from wandboard.org are not supported by Ubuntu. The mainline kernel includes driver support for serial console, display via HDMI (console and X11), ethernet, USB, MMC/SD and SATA. Support for the onboard audio options (analog, S/PDIF, HDMI-Audio) and for the onboard WLAN/Bluetooth module is not available in Ubuntu 20.04.
Generally, the ARM multiplatform support in the Linux kernel
allows running debian-installer
on armhf systems not explicitly listed above,
as long as the kernel used by debian-installer
has support for the target
system's components and a device-tree file for the target is
available. In these cases, the installer can usually provide a
working installation, but it may not be able to automatically make
the system bootable. Doing that in many cases requires
device-specific information.
When using debian-installer
on such systems, you may have to manually make
the system bootable at the end of the installation, e.g. by
running the required commands in a shell started from within
debian-installer
.
Multiprocessor support — also called “symmetric multiprocessing” or SMP — is available for this architecture. The standard Ubuntu 20.04 kernel image has been compiled with SMP-alternatives support. This means that the kernel will detect the number of processors (or processor cores) and will automatically deactivate SMP on uniprocessor systems.
Having multiple processors in a computer was originally only an issue for high-end server systems but has become common in recent years nearly everywhere with the introduction of so called “multi-core” processors. These contain two or more processor units, called “cores”, in one physical chip.
Ubuntu's support for graphical interfaces is determined by the underlying support found in X.Org's X11 system, and the kernel. Basic framebuffer graphics is provided by the kernel, whilst desktop environments use X11. Whether advanced graphics card features such as 3D-hardware acceleration or hardware-accelerated video are available, depends on the actual graphics hardware used in the system and in some cases on the installation of additional “firmware” images (see Section 2.2, “Devices Requiring Firmware”).
Nearly all ARM machines have the graphics hardware built-in, rather than being on a plug-in card. Some machines do have expansion slots which will take graphics cards, but that is a rarity. Hardware designed to be headless with no graphics at all is quite common. Whilst basic framebuffer video provided by the kernel should work on all devices that have graphics, fast 3D graphics invariably needs binary drivers to work. The situation is changing quickly but at the time of the focal release free drivers for nouveau (Nvidia Tegra K1 SoC) and freedreno (Qualcomm Snapdragon SoCs) are available in the release. Other hardware needs non-free drivers from 3rd parties.
Details on supported graphics hardware and pointing devices can be found at http://xorg.freedesktop.org/. Ubuntu 20.04 ships with X.Org version 7.7.
Almost any network interface card (NIC) supported by the Linux kernel should also be supported by the installation system; drivers should normally be loaded automatically.
On 32-bit hard-float ARMv7, most built-in Ethernet devices are supported and modules for additional PCI and USB devices are provided.